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Abstract—Many extensions of the Multi-Armed Bandit (MAB)
problem were studied recently offering a strong theoretical
basis for applications that require active learning. The Budget-
Constrained and Deadline-Driven MAB with Delay (BD-MAB)
variation introduces a novel scenario in which a player must
pull from K arms, each associated with reward, delay, and
cost distributions. To the best of our knowledge, this is the
first work that combines budget constraints with time delays
in an MAB problem. The model involves three phases. The
first phase comprises pulling arms, while incurring random
cost, and observing rewards. This phase ends when the budget
is depleted. The second phase includes observing some of the
delayed rewards. The third phase starts at a fixed termination
deadline, marking the end of reward observation, where any
rewards returned after this phase are not observed and are
considered dead. We present a novel solution to this problem
by developing a new Upper Confidence Bound (UCB)-based
algorithm. The name of the algorithm is Budget-Constrained
and Deadline-Driven UCB with Delay (BD-UCB) algorithm. We
provide extensive regret analysis that confirms the efficiency
of our approach in managing these complexities. Lastly, we
provide numerical simulations which further demonstrate the
effectiveness of our proposed solution.

Index Terms—Budget-constrained, delayed feedback, learning
theory, multi-armed bandit, upper-confidence bound.

I. INTRODUCTION

The prominence of uncertain and delayed feedback in
decision-making processes offers a significant shift in nu-
merous computer science applications. In such applications,
decision-making becomes an intricate process of assessing
options, predicting outcomes, and adapting to changing cir-
cumstances. Among various decision-making models studied
in computer science and machine learning, the Multi-Armed
Bandit (MAB) problem is the fundamental abstraction of
how to balance between exploration and exploitation under
uncertainty [1–3]. These foundational elements of the MAB
problem have led to its widespread application in numerous
fields, from the placement of online advertisements to the
allocation of resources in a dynamic environment [4–7].

However, real-world scenarios often present complexities
that extend beyond the classical MAB model. One such
complexity is the constraint of a limited budget, which leads
to the formulation of the Budget-Constrained MAB (B-MAB)
problem [8–10]. In this variation, each arm pull incurs some
cost, whether random or deterministic, and the total cost can-
not exceed a predetermined budget B. This added constraint
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Fig. 1: A basic illustration of the model. The first phase has an arm pulled
every round, and the second phase is where observing incoming rewards is
allowed, but no pulling is possible because the budget had been depleted. The
last phase is after the termination deadline where observation stops.

makes the decision-making process harder, as one needs to
optimize the reward while considering the cost of each action.

As many applications increase the need to model more
complex real-world scenarios, we encounter additional con-
straints that need to be accounted for [11–14]. An often
overlooked but important constraint is time, specifically, the
delay in observing rewards associated with each action and
the existence of a deadline, after which no further rewards
are considered. This temporal aspect is particularly important
in applications and situations where immediate feedback is
not available and rewards can be observed only after a certain
delay that is sampled from a stochastic process. Those rewards
sometimes may never arrive, meaning the delay can be infinite.

Given these considerations, we introduce a new model: the
Budget-Constrained and Deadline-Driven MAB with Delay
(BD-MAB) problem. Our model captures the intricacies of
decision-making under budget constraints, delays in reward
observations, and the presence of a strict deadline. It can be
viewed as a game with three distinct phases: the pulling and
observing phase, the observing phase, and the deadline phase.
Each phase presents unique challenges and together they add
a layer of complexity unseen in existing MAB models.

Figure 1 shows the model of the BD-MAB problem. The
first phase involves arm pulling, where each pull incurs a
random cost and results in rewards that might not be observed
immediately. This phase ends when the budget is depleted.
The second phase involves the observation of delayed rewards
from the actions taken in the first phase. Notably, the transition
from the first phase to the second one is stochastic as it
depends on both the budget and the random costs incurred



while pulling the arms. The last phase begins at a fixed point
in time, marking the end of the game. Any rewards arriving
post this deadline are not observed.

This dynamic and temporally constrained problem presents
unique challenges, like how to balance exploration and ex-
ploitation given the constraints of cost budget, delay, and
termination deadline. The stochastic nature of the transition
between the first and second phases adds another dimension of
uncertainty to the problem because of the random cost incurred
from pulling the arms. To tackle the BD-MAB problem,
we introduce a novel solution: the Budget-Constrained and
Deadline-Driven UCB with Delay (BD-UCB) algorithm.

This algorithm takes into account the reward distribution of
each arm and it also considers the cost and delay distributions.
Our UCB-based algorithm makes use of the constraints on the
time delay distributions of the arms to dynamically estimate
the amount of rewards that are expected to be eventually
observed before the deadline round. The algorithm dynami-
cally adjusts those estimates as the rewards are (or are not)
observed. Moreover, we provide a theoretical analysis of our
proposed algorithm, including regret bounds, which confirms
the efficiency of our BD-UCB algorithm under this model,
which combines budget constraints and stochastic delay.

The BD-MAB problem and the BD-UCB algorithm have
widespread applicability in numerous real-world scenarios.
For instance, in the domain of online advertising, ad place-
ments could be managed effectively by considering each ad as
an arm with associated costs, potential click-through rewards,
and observation delays [15–18]. Similarly, in healthcare, treat-
ment alternatives could be modeled as arms, each with its asso-
ciated cost, expected health outcome (reward), and observation
delay [19–21]. Another application is in cloud computing,
where virtual machines could be allocated optimally, taking
into account the cost of allocation, the expected efficiency
gains, and the delay in observing these gains [22–24].

Our main contributions in this paper are as follows:
• We propose the BD-MAB model, a novel extension of the

MAB problem, incorporating budget constraints, delayed
reward observation, and a deadline constraint.

• We develop the BD-UCB algorithm, a unique solution to
the BD-MAB problem, and we provide comprehensive
regret analysis for the algorithm.

• We illustrate the efficiency and robustness of the pro-
posed BD-UCB algorithm through numerical simulations,
comparing its performance with standard methods.

II. RELATED WORK

The MAB problem with delay, referred to as Delayed MAB,
has been studied with a focus on various assumptions about
the delay patterns. For instance, Joulani et al. [25] addressed
the case where all arms yield a constant delay, successfully
reducing the delayed MAB problem to the classical non-
delayed MAB problem under this specific assumption, which
shares the fact of having constraints on the delay distributions
with our work. In contrast, our work in this paper introduces

a new variant of MAB, namely BD-MAB, which incorporates
both budget constraints and delay in rewards. This variant
bears some similarity to the work by Tran-Thanh et al.
[8, 9], where MAB problems with budget constraints were
considered. However, these studies assumed fixed and known
costs, differing from our model which assumes stochastic
and unknown costs. Our model incorporates delay with some
restrictions in receiving rewards, unlike the aforementioned
works which consider the classic immediate feedback.

Our BD-MAB setting is also related to the work by Xia
et al. [26, 27], where they studied the MAB problem with
stochastic rewards and costs. Their work did not consider
budget constraints and delays, which are the focus of our
study. Similarly, the UCB-BV algorithm proposed by Ding
et al. [10] solves the B-MAB problem in which cost values
are random. However, the reward is immediate as no delay is
considered. Regarding previous work on MAB with delays,
both Gael et al. [28] and Zhou et al. [29] study the problem
while imposing some restrictions on the delay distributions,
similar to our work. However, Lancewicki et al. [30] and
Sawwan et al. [31] do consider delay distributions with no
constraints, but there is no budget constraint in their work. Our
work uniquely extends MAB literature by combining budget
constraints with delayed feedback, offering a more compre-
hensive model despite limited constraints on time delay.

III. BACKGROUND AND PROBLEM FORMULATION

We present the formal model of the BD-MAB problem,
detailing its three phases and the characteristics of the random
distributions for time delay, reward value, and arm cost.

A. Environment and Constraints

We consider an environment consisting of K distinct arms,
denoted by the set 1, 2, . . . ,K. Each arm i has associated with
it three random variables that represent the reward (R(i)), time
delay (D(i)), and cost (C(i)). When arm i is pulled at time t,
it yields a random reward rt(i), incurs a random cost ct(i),
and the reward will be observed after a random delay dt(i),
or more specifically, if a pulling algorithm a pulls an arm at
at round t, the reward rt(at) is observed at round t+dt(at) if
t + dt(at) ≤ Tdeadline. In addition, whenever a reward rt(i)
is observed, we know which arm it came from. However, we
do not need to know which exact pull (at which round) it was
generated. In other words, the value of dt(i) is not observed
alongside rt(i) when it arrives at round t+ dt(i).

Each reward rt(i) lies in [0, 1]. The cost values ct(i) can
only be integer multiples of the unit cost, 1/w, and are within
the range (0, 1]. Regarding time delay dt(i), its domain is
N ∪ {∞}, which means that the reward rt(i) will never be
observed when the value of dt(i) is infinite. In the BD-MAB
problem, we consider two principal constraints on the time
delay distributions of the arms. The first constraint mandates
the presence of a Dirac delta function at t = 0 with a weight
of at least κ, where 0 < κ ≤ 1. This means that, on average,
at least κ of the rewards are instantaneously observed upon
pulling the arm. We refer to the probability of instantaneous



TABLE I: Description of Commonly-Used Notation

Variable Description
K The total number of arms.
B The budget amount.
Tdeadline The deadline round.
rt(i) Reward from pulling arm i at round t.
µr(i) Average for reward distribution of arm i.
ct(i) Cost from pulling arm i at round t.
µc(i) Average for cost distribution of arm i.
dt(i) Delay sampled from pulling arm i at round t.
1/w The unit for the cost values.
ta(B) Budget depletion time of a pulling algorithm a given budget B.
nt(i) Number of times arm i’s reward was observed before round t.
mt(i) Number of times arm i was pulled before round t.
σ Lower bound for average cost values.
κ Lower bound of the probability of instant returns.
γ Upper bound of the probability of dead returns.
γ(i) Probability of dead return for arm i.
D(i) Delay distribution for arm i.
C(i) Cost distribution for arm i.
R(i) Reward distribution for arm i.
BD-UCBt(i)Budget-Constrained and Deadline-Driven UCB with Delay score

for arm i at round t.

returns for each arm i as κ(i), which is lower-bounded by κ. In
other words, for all arms i, we have

∫ 0+

0−
D(i)dt = κ(i) ≥ κ.

The second constraint caps the expected proportion of
rewards returning after the deadline round, Tdeadline, at γ for all
arms, such that 0 ≤ γ < 1. Mathematically, this implies that∫∞
Tdeadline

D(i)dt = γ(i) ≤ γ for all arms i. For this constraint
to hold, we need to assume that Tdeadline is significantly large
compared to the budget depletion time.

Other constraints considered in our model include that the
total budget B exceeds the total number of arms K, i.e., B >
K, allowing each arm to be pulled at least once during the
initialization phase. We also place a lower bound σ on the
expected value of cost distribution C(i) for each arm, ensuring
that no cost distribution has an average cost lower than σ. In
other words, It always holds that

∫ 1

0
xC(i)dx ≥ σ. Table 1

shows a description of the commonly-used notation.
B. Phases of the Problem

As discussed earlier, the BD-MAB problem encompasses
three different phases with the following specifications:

• Phase 1: This phase starts at the beginning of the problem
and continues until the budget is depleted at the budget
depletion round, denoted by ta(B) for a given pulling
algorithm a. During this phase, an arm is pulled at each
round, and all arriving rewards are observed.

• Phase 2: This phase begins immediately after the de-
pletion of the budget and lasts until the deadline round,
Tdeadline. In this phase, while no arms are pulled, we
continue to observe any incoming rewards.

• Phase 3: This final phase follows Tdeadline and continues
indefinitely. No rewards are observed in this phase, and
consequently, no arms are pulled. Any rewards that arrive
during this phase are considered as dead returns.

The settings of the problem are shown in Algorithm 1.
When an arm i is pulled, the environment independently
generates three values: the reward rt(i) that is sampled from
the probability distribution function (PDF) R(i), the cost ct(i)

Algorithm 1 Settings of BD-MAB
for t = 1, 2, . . . , Tdeadline do

if B > 0 then
Player pulls an arm at = i where i ∈ {1, 2, . . . ,K}.
MAB samples ct(at) ∼ C(at).
if B − ct(at) ≥ 0 then

MAB samples (rt(at), dt(at)) ∼ (R(at),D(at)).
B ← B − ct(at).

else
B ← 0.

Observe arriving rewards {(as, rs(as))|s = t− ds(as)}.

sampled from the PDF C(i), and the time delay dt(i) sampled
from the PDF D(i). Note that we abuse the notation in our use
of the aforementioned PDFs as we omit the actual independent
variable of the PDF (for example, D(i) represents the PDF of
the values of time delay when arm i is pulled). Furthermore,
µr(i) denotes the mean value of the reward distribution of the
arm i, and µc(i) denotes the mean value of the cost of arm i.

C. Expected Regret and Metrics

For a reliable criterion for the performance of the player’s
algorithm, we consider the metric of total regret which is
the difference between the algorithm’s expected cumulative
reward and the expected total reward of the arm with the
highest (1−γ(i))µr(i)

µc(i) . This arm is called the optimal arm
(denoted by i∗). This measure is extended from the expected
pseudo-regret [30, 31]. The expected regret is defined as:

Regret(B) = max
i

E[ΣTdeadline
t=1 (rt(i))]− E[ΣTdeadline

t=1 rt(at)]

=(1−γ(i∗)) B

µc(i∗)
µr(i∗)−E[Σta(B)

t=1 (1−γ(at))µr(at)]=E[ΣTdeadline
t=1 ∆at],

where ∆i =
(1−γ(i∗))µr(i∗)

µc(i∗) − (1−γ(i))µr(i)
µc(i) ∀i ∈ [1,K].

In addition, we consider that mt(i) denotes the number of
times an algorithm pulls an arm i before round t. Moreover,
nt(i) represents the number of times a reward from arm i has
been observed before round t. Furthermore, we consider µ̂r

t (i)
to be the empirical average of the rewards observed from arm
i before round t, defined as follows:

µ̂r
t (i) = (1/nt(i))Σs:t>s+ds(as) (I{as = i} × rs(i)) ,

where I{P} is the indicator function, which equals 1 if P =
true, and 0 if P = false. Similarly, we define the empirical
average of costs to be the following:

µ̂c
t(i) = (1/mt(i))Σ

t−1
s=1 (I{as = i} × cs(i)) .

Lastly, before each round t, Our strategy needs to have an
upper-bound estimate of the average percentage of rewards
arriving after Tdeadline, which is represented by γ̂t(i), and
can be evaluated based on the number of observed rewards
before round t as follows:

γ̂t(i) = min{1− nt(i)/mt(i), γ}.

The subroutine shown in Algorithm 2 shows how the
parameters are updated and will be used in our strategy.



Algorithm 2 Update Parameters(t)
Input: (as, rs(as), cs(as), ds(as)) ∀s ≤ t, K, γ.
Output: NULL. // Just update the values.
for i ∈ 1, 2, . . . ,K do

nt(i)← Σs:t>s+ds(as)I{as = i}.
mt(i)← Σt−1

s=1I{as = i}.
µ̂r
t (i)← 1

nt(i)
Σs:t>s+ds(as) (I{as = i} × rs(i)).

µ̂c
t(i)← 1

mt(i)
Σt−1

s=1 (I{as = i} × cs(i)).
if 1− nt(i)/mt(i) ≥ γ then

γ̂t(i) = γ.
else

γ̂t(i) = 1− nt(i)/mt(i).

Return NULL.

IV. THE SOLUTION OF THE PROBLEM

In this section, we present our solution to the BD-MAB
problem, referred to as BD-UCB algorithm, and describe it in
details. This strategy leverages the concept of the UCB while
considering the delay and budget constraints associated with
each arm. Our strategy is displayed in Algorithm 3.

Given the set of arms K, budget B, delay parameters κ
and γ, the average cost lower bound σ, unit cost 1/w, and
deadline round Tdeadline, the algorithm begins by initializing
the variables and pulling each arm once. This provides the
algorithm with initial cost, and perhaps some instant rewards,
from each arm i. At each subsequent round t, while the budget
B is still positive, the algorithm executes the following steps:

• Parameter Update: This step includes the invocation of
a subroutine Update Parameters(t), which adjusts the
empirical averages of rewards, costs, and delay charac-
teristics for each arm based on the past observed values.

• BD-UCB Score Calculation: For each arm i, a BD-UCB
score is calculated. This score is a modified version
of the traditional UCB score, accounting for the delay
and budget constraints. The BD-UCB score for an arm
i is a trade-off between its empirical observed-reward-
to-cost ratio and an exploration term that encapsulates
the uncertainty around this ratio. The numerator of the
exploitation term of the score is scaled by (1− γ̂t(i)) to
factor in the portion of rewards that are not dead returns,
which makes the algorithm naturally avoid arms with
high probabilities of dead returns.

• Arm Selection: The arm at with the maximum BD-UCB
score is chosen for pulling at round t. This principle is
based on optimism in the face of uncertainty, a strategy
that aims to balance exploration (trying out arms that
have not been pulled much to gain more information) and
exploitation (choosing arms that currently seem optimal).

• Budget Update and Reward Observation: If pulling the
chosen arm doesn’t lead to a budget overrun, the cost
of pulling the chosen arm is deducted from the budget,
and the algorithm proceeds to observe rewards that have
arrived during this round from previous arm pulls.

When the budget is depleted, the algorithm stops pulling

Algorithm 3 BD-UCB
Input: K, B, κ, γ, σ, w, Tdeadline.
Output: The set of pulled arms at s.t. t ∈ [1, ta(B)].
Initialization: t← 1.

Pull each arm i ∈ 1, 2, . . . ,K one time.
B ← B −

∑b
s=1 cs(as).

Observe {(as, rs(as))|s ≤ K − ds(as), s ≤ K}.
t← t+K.

while B > 0 do
Call Update Parameters(t) subroutine from Algorithm 2.

BD-UCBt(i)← (1−γ̂t(i))µ̂
r
t (i)

µ̂c
t(i)

+
(1+ 1

σ )
√

(log(t−1))/nt(i)

σ−
√

(log(t−1))/nt(i)
.

Pull arm at = argmaxi BD-UCBt(i).
if B − ct(at) ≥ 0 then

B ← B − ct(at).
Observe rewards {(as, rs(as))|s = t− ds(as)}.
t← t+ 1.

else
B ← 0.

Observe {(as, rs(as))|t−ds(as)≤s ≤ Tdeadline−ds(as), s<t}.
Return {a1, a2, . . . at−1}.

arms but continues to observe arriving rewards until the
deadline round. Finally, the algorithm outputs the sequence of
pulled arms when round Tdeadline comes. The factors we chose
in our BD-UCBt(i) score are carefully chosen to guarantee a
bounded expected regret, as shown in the next section.

V. REGRET ANALYSIS

Our algorithm extends classical UCB algorithms, but this
extension introduces unique challenges. While one might
assume the regret analysis for BD-UCB mirrors that of its
predecessors, it is more complex due to several factors.

Stochastic reward arrivals add significant complexity. In
traditional MAB problems, rewards are received instantly or at
predictable intervals. However, with stochastic delays, rewards
arrive unpredictably, disrupting the linear time progression
assumed in classical bandit problems. This unpredictability
complicates reward estimation and decision-making, necessi-
tating new techniques to analyze BD-UCB’s regret bound.
The budget constraint further complicates matters. Unlike
classical MAB, where the optimal policy involves consistently
selecting the arm with the highest expected reward or reward-
to-cost ratio, the budget constraint forces a more nuanced
evaluation of potential rewards against costs, considering the
unpredictable arrival times. This requires a more sophisticated
strategy, making regret bound derivation more intricate.

The deadline constraint adds another layer of complexity by
imposing a hard stop on reward observation beyond a certain
point regardless of when rewards arrive. Unlike typical MAB
scenarios, this forces the algorithm to optimize both reward-to-
cost and time-to-reward ratios under stochastic delays further
complicating regret analysis. The combination of stochastic
delays, budget constraints, and deadlines requires a novel
approach. We first examine the optimal policy’s behavior and



total reward when all distributions are known (Theorem 1).
Next, we analyze the budget depletion time (ta(B)) for BD-
UCB and establish bounds for its expected value in Lemma 1.
Finally, we present the regret bound for BD-UCB in Theorem
2, with a corollary addressing the case of deterministic costs.

We begin by deriving the upper bound of the optimal pol-
icy’s expected reward, given that all underlying distributions
are known. Theorem 1 provides this upper bound, where i∗

represents the arm with the largest expected average-observed-
reward-to-cost ratio:

i∗ = argmax
i

(1− γ(i))µr(i)/µc(i).

Theorem 1. For the stochastic optimization problem:

max
a

E

 b∑
i=1

∑
s:Tdeadline≥s+ds(as)

(I{as = i} × rs(i))

 ,
such that: Σta(B)

t=1 ct(at) ≤ B,

(1)

where ∀t, (rt(at), ct(at), dt(at)) are sampled independently
from their corresponding random distributions
(R(at), C(at),D(at)), and where

∫∞
t=Tdeadline

D(i) ≤ γ
∀i ∈ {1, 2, . . . ,K}, the maximum value is upper bounded by

(1− γ)µr(i∗)(B + 1)/µc(i∗).

Proof. Denote R(B) as the maximum of the stochastic opti-
mization problem in Equation 1. It is given that B = b

w > 0,
given ∀ℓ < b, and we get:

E[R (ℓ/w)] ≤ (ℓ/w + 1) (1− γ(i∗))µr(i∗)/µc(i∗),

where the term (1 − γ(i∗))µr(i∗) is the expected overall
average observed reward for the optimal arm i∗ before Tdeadline.
We now need to prove that:

E[R (b/w)] ≤ (b/w + 1)(1− γ)µr(i∗)/µc(i∗).

In an analysis of the initial stage of the optimal algorithm,
say that the algorithm pulls arm i with a probability z(i)
at the first round. Regardless of the actions of the optimal
algorithm during this initial round, the total probability across
all arms, denoted by

∑K
i=1 z(i), equals 1. The variable p(i, j)

denotes the probability that the cost of arm i would be j
w . For

arm i, the set of values {p(i, 1), p(i, 2), . . . , p(i, w)} show the
cost random distribution C(i). In scenarios where the optimal
algorithm pulls arm v at round 1, z(v) would equal 1, and
z(i) would equal 0 ∀i ̸= v. Now, since γ ≥ γ(i) ∀i ∈
{1, 2, . . . ,K}, this setup would lead to the inequalities:

E[R
(
b

w

)
] ≤

b∑
i=1

z(i)

w∑
j=1

p(i, j)

(
E
[
r(i)|c(i)= j

w

]
+R

(
b− j
w

))

≤
b∑

i=1

z(i)((1− γ(i))µr(i))

+

b∑
i=1

z(i)

(
((1−γ(i∗))µr(i∗)/µc(i∗))

w∑
j=1

p(i, j)(1 + (b− j)/w)
)

≤ (1− γ)µr(i∗) (1 + b/w) /µc(i∗).

which concludes the proof.

Now, we need to show both the upper and lower bounds of
the expected budget depletion time (E[ta(B)]) from our BD-
UCB algorithm, denoted in this context as algorithm a. The
following lemma shows the upper and lower bounds.

Lemma 1. If for all arms i, the total number of times the
arm is pulled before the budget depletion time is mta(B)(i).
Furthermore, if for all suboptimal arms i ̸= i∗, there exists
strictly positive factors ζi and ψi such that it holds that
E
[
mta(B)(i)

]
≤ ζi log ta(B) + ψi, then we can guarantee:

E[ta(B)] ≤ B + 1

µc(i∗)
+ζ log

(
2B+2

µc(i∗)
+2ζ log(2ζ)+2ψ

)
+ψ, (2)

E[ta(B)]>
B−ψ
µc(i∗)

− ζ

µc(i∗)
log

(
2B+2

µc(i∗)
+2ζ log(2ζ)+2ψ

)
−1, (3)

where ψ =
∑

i ̸=i∗ ψi, ζ =
∑

i̸=i∗ ζi.
Proof. First, we consider the blind pulling algorithm that
spends the whole budget B on pulling arm i. We denote
this pulling algorithm as xi, and its budget depletion time as
txi

(B). Now, we know that since pulling algorithm xi only
pulls arm i, the average value for txi

(B) would be:
E [txi(B)] = ⌊B/µc(i)⌋ , (4)

which can be equivalently formulated as the set of bounds:
B/µc(i)− 1 < E [txi

(B)] ≤ (B + 1)/µc(i). (5)

To show this, first, we know that B = b/w > 0. Now,
assuming Equation 5 holds for all ℓ < b, then it is also valid for
B. This validates the correctness of Equation 5 for B = (b/w).
After the first round of the algorithm, the residual budget
would be (b − j)/w; the expected depletion time acquired
by this remaining budget would be E[txi

((b− j)/w)]. Hence,
txi(B) can be formulated in the following recursive equation:

E [txi(B)] = Σw
j=1p(i, j) (1 + E [txi ((b− j)/w)]) . (6)

Now, since b > m, we get:
E [txi

(B)] > Σw
j=1(p(i, j)/µ

c(i)) (B − j/w)

= Σw
j=1(p(i, j)/µ

c(i))B −Σw
j=1(p(i, j)/µ

c(i))(j/w)

= (B/µc(i))������: 1∑w
j=1 p(i,j)−(1/µc(i))

�������:µc(i)∑w
j=1 p(i,j)

j
w

= B/µc(i)− 1.

(7)

In addition, we have the inequality:

E [txi
(B)] ≤

w∑
j=1

p(i, j)

(
1 +

B − j
w + 1

µc(i)

)
=
B + 1

µc(i)
. (8)

Proving the bounds in Equation 5. Now, we substitute
Equations 7-8 with the conditions provided in the lemma.
Therefore, we obtain the following two inequalities:
E[ta(B)]≤E [txi∗ (B)]+Σi̸=i∗ζiE[log ta(B)]+Σi̸=i∗ψi

≤ (B + 1)/µc(i∗) + ζE[log ta(B)] + ψ.
(9)

E[ta(B)] ≥ E
[
txi∗

(
B −Σi̸=i∗ζi log ta(B)−Σi ̸=i∗ψi

)]
> (B − ζE[log ta(B)]− ψ)/µc(i∗)− 1.

(10)

But we have the following inequality:

E[log ta(B)] ≤ E[ta(B)]/(2ζ) + log(2ζ)− 1. (11)



Lastly, we substitute Equation 11 into Equations 9-10,
which gives us the two inequalities shown in Equations 2-3.
Doing that concludes the proof.

To this end, we have everything set up to introduce the
following regret bound of the BD-UCB algorithm.

Theorem 2. The upper bound for the expected regret of the
BD-UCB algorithm is:
Regret(B) ≤ Ω+ (1− γ)×(
νlog

(
B + 1

µc(i∗)
+ζ log

(
2B+2

µc(i∗)
+2ζlog(2ζ)+2ψ

)
+ψ

)
+

µr(i∗)

µc(i∗)

(
ζlog

(
2B+2

µc(i∗)
+2ζ log(2ζ)+2ψ

)
+ψ+µc(i∗)+1

))
,

(12)

where



∆i =
(1−γ(i∗))µr(i∗)

µc(i∗) − (1−γ(i))µr(i)
µc(i) ,

σ ≤ mini µ
c(i),

ψi = 2 + 2π2

3 , ζi =
(
(2 + 2

σ +∆i)/(∆iσ)
)2
,

ψ =
∑

i:i ̸=i∗ ψi, ζ =
∑

i:i ̸=i∗ ζi,

Gi = {i|(1− γ(i))µr(i) < (1− γ(i∗))µr(i∗)},
ν =

∑
i∈Gi

(ζiµ
r(i∗)− ζiµr(i)) ,

Ω = (1− γ)
∑

i:i̸=i∗ (ψi (µ
r(i)− µr(i∗))) .

Proof. Before we start, we need to bound the number of times
an arm i ̸= i∗ is pulled by the time the budget is depleted.
Hence, we get the upper-bound:

E
[
mta(B)(i)

]
≤
(
2 + 2

σ +∆i

∆iσ

)2
log ta(B) + 2 +

2π2

3
. (13)

Now, we introduce round τa(i, B) such that:
τa(i, B) = ((2 + (2/σ) + ∆i)/(∆iσ))

2 × log ta(B). (14)

Given a budget depletion time ta(B) and its corresponding
τa(i, B) value, the value of mta(B)(i) would be either smaller
than τa(i, B), for which it directly follows:

E
[
mta(B)(i),mta(B)(i) < τa(i, B)

]
< τa(i, B), (15)

or greater than or equal to τa(i, B), for which we get:
E
[
mta(B)(i),mta(B)(i) ≥ τa(i, B)

]
=1 + E

[
Σta(B)

t=K+1I {at = i} |mta(B)(i) ≥ τa(i, B)

]
≤

ta(B)∑
t=K+1

P

(
(1−γ̂t(i))µ̂r

t (i)

µ̂c
t(i)

+Lt(i)≥
(1−γ̂t(i∗))̂µr

t (i
∗)

µ̂c
t(i

∗)
+Lt(i

∗),

mt(i) ≥ τa(i, B)

)
+ τa(i, B)

≤P
(
(1− γ̂t(i))µ̂r

t (i)

µ̂c
t(i)

≥ (1− γ(i))µr(i)

µc(i)
+Lt(i)

)
+P

(
(1− γ̂t(i∗))µ̂r

t (i
∗)

µ̂c
t(i

∗)
≤(1−γ(i

∗))µr(i∗)

µc(i∗)
−Lt(i

∗)

)
+P

(
(1− γ(i∗))µr(i∗)

µc(i∗)
<

(1− γ(i))µr(i)

µc(i)
+ 2Lt(i),

mt(i) ≥ τa(i, B)

)
+ τa(i, B),

(16)

where we define:
Lt(i) =

(
1 + 1

σ

)√
(log(t− 1))/nt(i)

σ −
√
(log(t− 1))/nt(i)

. (17)

Now, we know that if the inequality (1−γ̂t(i))µ̂
r
t (i)

µ̂c
t(i)

≥
(1−γ(i))µr(i)

µc(i) + Lt(i) holds, event A1 or event A2, or both
events would happen, such that:

A1 : (1− γ̂t(i))µ̂r
t (i) ≥ (1− γ(i))µr(i) + αt(i),

A2 : µ̂c
t(i) ≤ µc(i)− αt(i),

(18)

given that αt(i) =
√

log t/nt(i). Otherwise, we would get:

((1− γ̂t(i))µ̂r
t (i))/µ̂

c
t(i)− ((1− γ(i))µr(i))/µc(i)

= ((1−γ̂t(i))µ̂r
t (i)−(1−γ(i))µr(i))µc(i)/(µ̂c

t(i)µ
c(i))

+ (µc(i)− µ̂c
t(i)) (1− γ(i))µr(i)/(µ̂c

t(i)µ
c(i))

<αt(i)/µ̂
c
t(i) + αt(i)(1− γ(i))µr(i)/(µ̂c

t(i)µ
c(i))

≤αt(i)/(σ − αt(i)) + αt(i)/((σ − αt(i))σ) = Lt(i).

(19)

Applying Chernoff-Hoeffding inequality:
P ((1− γ̂t(i))µ̂r

t (i) ≥ (1− γ(i))µr(i) + αt(i))

≤ exp
(
−2(αt(i))

2nt(i)
)
= t−2,

P (µ̂c
t(i) ≤ µc(i)− αt(i))

≤ exp
(
−2(αt(i))

2nt(i)
)
= t−2.

(20)

Hence,

P

(
(1− γ̂t(i))µ̂r

t (i)

µ̂c
t(i)

≥ (1− γ(i))µr(i)

µc(i)
+ Lt(i)

)
≤

∞∑
t=1

P ((1− γ̂t(i))µ̂r
t (i) ≥ (1− γ(i))µr(i) + αt(i))

+

∞∑
t=1

P (µ̂c
t(i)≤ µc(i)−αt(i)) ≤ 2

∞∑
t=1

t−2≤1+
π2

3
.

(21)

Next, we can apply the Chernoff-Hoeffding inequality in
the same manner to get:

P

(
(1− γ̂t(i))µ̂r

t (i)

µ̂c
t(i)

≤(1−γ(i))µ
r(i)

µc(i)
−Lt(i

∗)

)
≤1+

π2

3
. (22)

But ∀nt(i) ≥ τa(i, B), we can derive the following two
inequalities: √

log t/τa(i, B) < σ,

Lt(i) ≤
(
1 + 1

σ

)√
log t/τa(i, B)

σ −
√
log t/τa(i, B)

≤ ∆i

2
.

Hence we get:

P

(
(1− γ(i∗))µr(i∗)

µc(i∗)
<

(1− γ(i))µr(i)

µc(i)
+ 2Lt(i),

nt(i) ≥ τa(i, B)

)
= 0.

(23)

Substituting Equations 21, 22, and 23 in Equation 16:

E
[
mta(B)(i),mta(B)(i)≥τa(i, B)

]
≤τa(i, B)+2+

2π2

3
. (24)

We now substitute the bound achieved in Theorem 1 to
derive the bound of the expected regret:
Regret(B) ≤(
(1−γ(i∗))µr(i∗)

µc(i∗)
(B+1)−(1−γ(i∗))µr(i∗)E [ta(B)]

)
+
(
(1− γ(i∗))µr(i∗)E [ta(B)]− E

[
Σta(B)

t=1 rt(at)
])
.

(25)



Fig. 2: Total regret versus the budget amount for the different algorithms
under different parameters where σ = 0.3.

To this end, we make use of the bounds we got in Lemma
1 to bound the budget depletion time that shows up in the first
term, while setting the specific values of ζ and ψ such that:

ζ =
∑

i ̸=i∗

(
2+ 2

σ+∆i

∆iσ

)2
and ψ = 2(K − 1)

(
1 + π2

3

)
.

For the second term, we notice that it is just a normalized
version of the standard MAB settings such that:

(1− γ(i∗))µr(i∗)E [ta(B)]− E
[
Σta(B)

t=1 rt(at)
]
=

E
[
Σi ̸=i∗mta(B)(i)((1−γ(i∗))µr(i∗)−(1−γ(i))µr(i))

]
.

(26)

This gives us the bound of the expected regret shown in
Equation 12, which concludes the proof.

By Theorem 2, we showed how, on average, our BD-
UCB algorithm guarantees a regret bounded by O(logB). The
following Corollary shows the expected regret bound of BD-
UCB if the cost values were fixed (i.e. deterministic).

Corollary 1. The expected regret of BD-UCB for the case
in which ∀i ∈ {1, 2, . . . ,K}, the cost distribution C(i) is
just one pulse at a specific value c(i) and zero everywhere
else, is bounded by Regret(B) shown in Equation 12 with

substituting ζi =
(

2+ 2
mink c(k)

+∆i

∆i mink c(k)

)2
and ψi = 2 + 2π2

3 .

VI. SIMULATIONS

A. Experimental Settings

Now, we detail the experimental setup we used to validate
the performance of the BD-UCB algorithm. Our aim is to
illustrate the effectiveness of BD-UCB in navigating the
complexities of the BD-MAB problem and compare it to
existing algorithms under the same conditions. Some previous
similar work regarding modeling delayed MAB problems can
be found in the work done in [28–30].

Fig. 3: Total regret versus the time delay distribution bounding parameters κ
and σ. The other parameters are set so that B = 3000 and σ = 0.3.

1) Simulation Environment: We conduct our experiments in
a synthesized data environment designed to mirror a BD-MAB
scenario. The simulation environment includes K = 30 arms,
each with its own unique reward, cost, and delay distributions.
The reward distribution for each arm i is assumed to be
a scaled and truncated Gaussian distribution with a mean
of µr(i) and a standard deviation of σr(i). This means the
rewards rt(i) ∼ N̄ (µr(i), (σr(i))2). The value of the average
reward for each arm i is sampled randomly from a uniform
distribution that yields a value between 0 and 1. In other
words µr(i) ∼ UNIFORM(0, 1). The standard deviation of
the reward values σr(i) are set to 0.2 for all arms.

The cost values, on the other hand, are sampled from a
different cost distribution for each arm i. Those cost distribu-
tions C(i) follow a discretized, truncated, and scaled version
of the Gaussian distribution with a mean value of µc(i) and a
standard deviation of σc(i) for each arm i. The unit cost 1/w
is set to 0.05. This means that ct(i) ∼ N̄0.05(µ

c(i), (σc(i))2)
for all arms. The values of µc(i) are randomly sampled from
a uniform distribution that yields a value between σ and
1. Mathematically, µc(i) ∼ UNIFORM(σ, 1) for all arms i.
Lastly for the cost, the standard deviations of the cost values
σc(i) are set to 0.2 as well, for all arms i. The value of σ is
fixed and takes a value in the range [0.3, 0.6].

The player has a budget of B that is set to have a fixed value
from the range of [100, 300]. The termination deadline round
Tdeadline is set to a large value compared to the average budget
depletion time for all pulling algorithms, more specifically
limB→∞(B/σ)/Tdeadline = 0. Hence, we opt to set the value
of Tdeadline to be (B/σ)2 for all experiments. Regarding the
delay distributions, they all have a Dirac delta function of
weight κ(i) at t = 0 and another Dirac delta function of
weight γ(i) at round Tdeadline +1. For each arm i, the value of
κ(i) is first sampled from a uniform random distribution that
gives a value between κ and 1. Afterwards, the value of γ(i)
is sampled from a uniform random distribution that gives a



Fig. 4: Total regret versus the cost distribution bounding parameter σ and budget B. The other parameters are set so that γ = 0.7, and κ = 0.9.

value between 0 and min{γ, 1− κ(i)}.
The value of κ is fixed and takes a value between 0.2 and

1, while the value of γ is fixed and takes a value between 0
and 0.7. Those settings reflect a diverse set of costs and delays
that may arise in a real-world scenario. All the distributions
are assumed to be stationary throughout the simulation period.
The remainder parts of the delay distributions for each arm
(i.e., a weight of 1 − κ(i) − γ(i)) are modeled as truncated
Gaussian distributions that cover the region t ∈ [0, Tdeadline]
such that the average of this Gaussian distribution for each arm
is sampled from another Gaussian distribution with a mean
value of t = 10000, and a standard deviation of 2000. The
standard deviation of the main truncated Gaussian distribution
is set to 2000 as well. Simply adding this truncated Gaussian
distribution with the two Dirac delta functions at t = 0 and
t = Tdeadline + 1 for each arm yields the final time delay
distributions D(i) used in each instance of our simulations.

2) Replication and Randomization: To ensure the robust-
ness of our results, each simulation scenario is repeated
N times, with N set at 50. Between each replication, the
simulation environment is randomized, i.e., the random values
specified, as the mean reward, cost, and delay for each arm
are re-drawn from their respective distributions.

B. Algorithm Comparison

Now, we present the algorithms we will use to compare with
our proposed BD-UCB algorithm. Specifically, we consider
the standard UCB, Thompson Sampling, and ϵ-greedy algo-
rithms for comparison. These algorithms have been selected
due to their wide application and success in addressing various
MAB problems. Although not designed to handle both budget
and delay constraints simultaneously, these algorithms would
provide a reasonable benchmark to evaluate the effectiveness
of the proposed BD-UCB algorithm for the BD-MAB.

1) Standard UCB [32]: The classical UCB algorithm bal-
ances exploration and exploitation by picking, every round,
the arm with the highest UCB score, defined as:

UCBt(i) = µ̂r
t (i) +

√
2 log t/nt(i),

which is the optimal strategy for classic MAB settings.
2) Thompson Sampling [33]: Thompson Sampling is a

Bayesian approach to the MAB problem that selects arms
based on sampled expected rewards µ̂r

t (i). The algorithm has
demonstrated strong empirical performance in various settings.
However, like the standard UCB, it does not incorporate
budget or delay constraints into the arm selection process.

3) ϵ-greedy [8]: The ϵ-greedy algorithm is another popular
solution to the MAB problem. It explores uniform-randomly

all arms with probability ϵ and exploits the best-known arm
that has the highest µ̂r

t (i) with probability (1−ϵ) every round.

C. Simulation Results

Extensive simulations reveal a clear hierarchy in algorithm
performance across various parameter sets. BD-UCB con-
sistently outperforms other algorithms in BD-MAB settings.
Figure 2 illustrates cumulative regret against the player’s
budget B, which also determines Tdeadline. Our BD-UCB algo-
rithm shows approximately 25% less regret than the second-
best, classical UCB, depending on the problem specifics.
As expected, epsilon greedy performs the worst. Thompson
Sampling outperforms classical UCB at low σ values but
suffers higher regret at high σ values.

The effect of the lower bound of average cost values σ
on algorithm performance is shown in Figure 4. Thompson
Sampling is notably sensitive to changes in σ, displaying
drastic shifts in performance as σ varies, due to its reliance
on frequent arm pulls. Interestingly, regret decreases with
increasing σ for both UCB algorithms, while it increases
for Thompson Sampling and epsilon greedy. This is because
higher σ reduces the number of arm pulls, benefiting UCB
algorithms due to their formulaic structure. Additionally, lower
σ extends the period before Tdeadline, favoring UCB algorithms
by giving them more time to optimize rewards.

Figure 3 shows the impact of delay distribution parameters
on algorithm behavior. For most algorithms, regret decreases
linearly as γ increases, consistent with the theoretical bounds
in Theorem 2. A higher γ means more rewards are accrued
after Tdeadline, lowering comparative regret since the optimal
strategy xi∗ collects rewards more efficiently. When γ ap-
proaches zero, nearly all rewards are gathered post-deadline,
driving cumulative regret to zero. Regarding the second delay
parameter, κ, our results show a negative correlation with total
regret across algorithms. This is due to a reduced fraction
of immediate feedback, slowing the update process for esti-
mated mean rewards µ̂r

t (i) and delaying the recalibration of
metrics like UCB scores. Consequently, this leads to impaired
algorithm performance, as reflected in increased regret. This
analysis underscores the significant impact of time delay
parameters on algorithm efficacy in dynamic environments.

VII. CONCLUSION

This paper presents a new extension of the Multi-Armed
Bandit (MAB) problem, introducing the novel Budget-
Constrained and Deadline-Driven MAB with Delay (BD-
MAB) variation. By combining budget constraints and time



delays in the MAB framework, this work addresses a pre-
viously unexplored scenario with practical implications for
applications that require active learning with delays. We
proposed a solution, named the Budget-Constrained and
Deadline-Driven UCB with Delay (BD-UCB) algorithm,
which efficiently manages the three distinct phases, time delay
distributions, and budget and deadline constraints of the BD-
MAB problem. Theoretical analysis of regret confirms the
effectiveness of the BD-UCB algorithm. The numerical sim-
ulations prove that BD-UCB consistently outperforms other
algorithms, showing a better regret than the regular UCB by
around 25%. Future work would include tackling a version
of the problem with looser constraints on the time delay
distributions of the arm to make the problem more general.
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